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Statistical description of model systems of interacting particles and phase transitions
accompanied by cluster formation
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We develop an approach to the statistical description of a system of interacting particles in order to describe
spatially inhomogeneous structures. A criterion is proposed for selecting system states whose contributions in
the partition function are dominant. A nonperturbative calculation of the partition function is demonstrated.
The known results for various systerfisard sphere model, gravitating gas, etre reproduced. Spatially
inhomogeneous system states are considered. The conditions for the phase transition accompanied with cluster
formation are found for model systems. Cluster size distribution and cluster interaction residual energy are
estimated. The formation of new spatial structures in a cluster system is cons[@&reé3-651X98)07206-7

PACS numbsgs): 05.30—d, 05.70.Fh

[. INTRODUCTION strate the efficiency of the proposed approach by a nonper-
turbative calculation of the partition function for the known
The formation of spatially inhomogeneous particle andmodel systems with interactiothard sphere model, Cou-
field distributions is a topical problem in condensed mattelOmb gas, gravitating gas, elcThis approach allows one to
physics. It concerns the study of physical grounds of thelescribe any system of interacting particles with regard for
optimum states of the system and is of value for application§Patially inhomogeneous particle distributions. A typical
in practice[1-3]. Earlier investigations of the formation con- physical situation that nvo Ives b_ound states in a particle
o : . system occurs when the interaction consists of long-range
ditions and behavior of the inhomogeneous states havgraction and short-range repulsion. Another realistic situa-
mainly employed the statistical theory of nonequilibrium tjon js associated with the contrary case when the repulsion
processes. However, spatially inhomogeneous particle anénge is longer than the attraction range. Such physical sys-
field distributions can also be formed in equilibrium systemstems are, e.g., electrons on the liquid helium surfeics,
The conditions for the formation of such structures and theipolar atoms and molecules on a metal or dielectric surface
physical manifestation are determined first of all by the type 14,15, and ions implanted in silicoft,16]. As long as such
of interaction. So, we have to formulate an adequate mathnteraction is present, the system cannot be homogeneous
ematical method that would describe formation and behaviofnd hence it involves spatially inhomogeneous particle
of spatially inhomogeneous equilibrium particle and field distributions—finite-size clusters. .
distributions. . The_ prppo_sed approach allows one to descrlbe. such par-
. . ticle distributions, to calculate cluster size, to estimate the
The purpose of this paper is to develop an apprdd¢ko

- e i ! . ._number of particles within a cluster, and to determine the
the statistical description of a system of interacting part'deﬁemperature of the phase transition to the state under consid-

with regard for spatially inhomogeneous particle distribution.aration. The number of particles in a cluster and the size of
In order to describe such structures, it is necessary to wortqe |atter depend on the interaction type and intensity as well
out a method that would enable us to select the states withs on external parameters. The residual interadtimeom-
thermodynamically stable particle distributions in the parti-pensated after the cluster formatjgroduces interaction be-
tion function. The representation of the partition function intween clusters that, in turn, can cause formation of new spa-
terms of a functional integral over auxiliary fields makes ittial structures in the cluster system. The problem of how to
possible to employ the methods of quantum field thgsry  find the cluster distribution and to estimate the influence of
11]. An attempt to apply the functional integral in the de- the external factors also can be solved in terms of this ap-
scription of multiparticle systems was discussed for the firsProach. -~ ) . )
time in Ref.[12]. The advantages and difficulties of this  Thus, a unified approach makes it possible to describe
approach were described [6]. The extension to the com- eqU|I|b_r|um systems of interacting particles allow_mg for the
plex plane provides a possibility to apply the saddle-poinformation of thermodynamically stable spatially inhomoge-
method making no use of the perturbation theory. It allowg'€0US particle distributions and to con5|d_er t.he collepnve be-
one to select the system states associated with both homog*%qv'qr of thg structures formed. The topicality of this prob-
neous and inhomogeneous particle distributions. em is confirmed by the recent attempts made by other

A few model systems of interacting particles are known,24thors(1,5.6.
for which the partition function can be evaluated exactly, at

. . L . II. PARTITION FUNCTION FOR MODEL SYSTEMS
least in the thermodynamical limit. In this paper we demon-

WITH INTERACTION. THE STATE SELECTION
CRITERION

A wide range of systems of interacting particles occur, for
*Electronic address: lev@elphys.carrier.kiev.ua which the statistics must be involved in consideration while
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57 STATISTICAL DESCRIPTION OF MODEL SYSTEMS B. .. 6461
dynamical quantum correlations can be disregarded. Thigies of particles in the states ands’, respectively. The
means that the interaction can be treated classically. Theacroscopic state of the system is determined by the occu-
Hamiltonian of such a system can be written[28—-23 pation numberss. The subscrips corresponds to the vari-
ables that describe individual particle states. It also can enu-
merate the lattice sitegl8,20]; the specifics of the lattice
H(n)=>, Ssns_l > Wss’nsns’+£ > Ugoneng, does not influence the result. Though the approach is ad-
equate for considering the discrete case as well, in this study
(1) we are interested only in the continuum approximation and
assume that the medium is isotropic.
The partition function of the grand canonical ensemble is
given by

where g is the additive part of the particle energy in the
states (in most cases it is the kinetic enejgyV,y andUg
are the absolute values of the attraction and repulsion ene

1 1
=2 exp(—BH)= E exp{ [z Ssns—z 2 Wssrnsns,+§ E UgoNgng

{n} s,s’ s,s’

} , 2

whereX, implies summation over all possible distributiofs}, S=1/kT, andT is the absolute temperature. The summa-
tion in Eq. (2) can be formally carried out by introducing auxiliary field variables and making use of the known properties of
the Gauss integral$,8-11, i.e.,

2
) 0 B
€ex 2 Wgg NgNgr :f Do ex VE Nsps— 5 2 wss}(Ps(Ps’ ) (3
20 — o0 s 2 S,S/

with

des

Here w;S,l is the inverse matrix that satisfies the equatim@l,wsns,zﬁss, and v>=+1 depending on the sign of the
interaction or the potential energy.
Within the context of Eq(3), the partition function can be written as

ngoJ Dy, exp{ (@s+iths— Beg)Ng—

{ng}

25 - 2 (Weg@sps+U g thsther) b (4)

In the above analysis, we did not restrict the number of particles. Now let us fix the number of particles in the system,
N(n)=234ns. This means that we consider the canonical ensemble. To do this, we use the well-known Cauchy formula, i.e.,

1
ﬁ § gESnstfldgz 1.

Then, making use of the contour integfal, 22, we write the partition function of the system Nfparticles in terms of the
grand partition function. Thus we have

Zy= >0 % dgf D('Dj Dy ex% 2,3 (WS_S}(,DSQDSPFUs_s}lflsl/lsr)_(N'f'l)ln §]1_S[ {nz} [€ explost+is—Beg)]™s
®

After summing over the occupation numberg the partition function reduces to

Zn=5— fﬁdgf szf Dye Sed), (6)

where

S(@,,)= 2 (W_g @sps + Uy thethsr) + 62 n(1— e Fest s cos ) +(N+1)In &. (7)
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In the last expression, the sigix= =1 depends on the statis- as the particle distribution function determined by the auxil-
tics (plus and minus for the Bose and Fermi systems, respedary fields. It is obvious that, for given statistics, the distri-
tively). bution function depends on the interaction nature and inten-

The partition function representation in terms of the func-sity. Moreover, the proposed representation can be used to
tional integral over auxiliary fields corresponds to the con-extend the treatment of the Bose condensation to the coordi-
struction of an equilibrium sequence of probable states of theate space. The cluster formation corresponds to particle lo-
system with regard for their weights. This representation enealization within a limited space. In our treatment, the effect
ables us to employ the well known methods of quantum fields reflected in the behavior of the auxiliary fields and chemi-
theory and to avoid using the perturbation theory. The exteneal potential. Probably, the proposed approach will improve
sion to the complex plane makes it possible to apply thehe understanding of the fractional statistics of particles too
saddle-point methofi7]. [8,23,24.

It should be emphasized that such a description is useful In what follows, we apply the approach to describe model
[5,6] because it advances the study of thermodynamical chasystems with various interactions, for which the partition
acteristics of model systems and their dependence on tHenction can be estimated in the thermodynamical limit.
medium. If interaction of some type does not occur, the genWith this purpose in view, we make use of the continuum
eral representatiof6) and (7) allows one to reproduce the approximation, which makes it possible to obtain analytic
partition function for pure gravitational attraction given in expressions even for inhomogeneous particle distributions.
Ref.[6], and the partition function of the sine-Gordon model In the continuum approximation, the subscspuns through
for pure Coulomb repulsion given in R¢b]. This approach a continuum of values in the system voluide When inte-
also makes it possible to consider the states with spatiallgrating over momenta and coordinates, we bear in mind that
inhomogeneous particle distributions. To do this, one has tthe unit cell volume in the space of individual states is equal
vary the functionalS(¢, , &) for the fieldse and ¢ and the  to w=(274)3.
analog of the chemical potentigl and then to apply the In the continuum case, the inverse matrix_ for the
saddle-point method in order to obtain the asymptotic valugnteractionwsy = w(|fs—F|) is given by[8,10,13
for the partition functionZy as N—o. The solutions, in
which the actior§ is finite as the volume of the system tends w =5 L., 9)
to infinity, can be interpreted as thermodynamically stable LA
particle distributions. Whether the distribution is homoge- N
neous or inhomogeneous depends on the solutions that satherel,. is the operator for which the interaction potential
isfy the extremum condition for the functions, i.e., isthe Green function. For the screened Coulomb or Newton-
55l 8¢ = 85I 8yp= 551 56=0. The equations for the saddle- ian potential, the inverse operator may be writter&s11]
point states are given by

1
— 2
1 gse(pscos 17[,5 er— - (Arr_)\ ), (10)

-1 _ 47qg?
52 Wi 04 T g ercosg, O
whereq? is the interaction constant and ! is the screening
1 . £.e9ssin i !ength. The number of realistic_int_ergctions, for_ \{vhic_h the
E SE Uty + Wzo, inverse operator can be found, is limited. The difficulties in

obtaining the inverse operator can be avoided by introducing
a collective variabl¢25,26 that corresponds to the relation-
2 £se¥sCos i CN+1 ®) ship between the introduced fields on the saddle-point trajec-
S 1— 5£.%5c0S i ’ tory. It is easier to find the required parameters of inhomo-
geneous structures in this approach, however, it is difficult to
where & = £efos= eBles— ) and u is the chemical potential. trace the formation details for such particle distributions.

This set of equations provides a solution of the aboveyvithout loss of generalit_y within the above appro>_<imatior_13,
many-particle problem in the sense that it selects the systeffl What follows we describe the model systems of interacting
states whose contributions in the partition function are domiPaticles taking into account their spatially inhomogeneous
nant. Inasmuch as the inverse of the interaction matrix is nafistributions. First of all we demonstrate the advantage of the
defined uniquely in the general case, it is impossible to findPProach for the well-known models, and then describe real
the general solution of the sé8). And even if the last prob- systems with interaction and find the conditions for the clus-
lem can be solved, there still remain technical difficultiest®’ formation and cluster parameters.
associated with solving a set of nonlinear equations and in-
terpreting the solutions thereof. In the sections that follow ll. MODEL SYSTEMS WITH INTERACTION
we consider the solutions for some model systems. )

It should be noted that the normalization conditighe To demonstrate the advantages of the approach, we first
third equation in the s&B)] enables us to regard the expres- derive the well-known results.
sion

A. ldeal Bose and Fermi gases

f _M For the ideal gasesp= =0 and the partition function

S 1— §£.£95C0S i (6) may be written as
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1 1
Zy=5 = fﬁdg exp{—éES In(1— 5&eFos) Zy=5— 3[>ng Dye S9 (16)

2i

3 1 dé¢ e and
—(N+1)In g]_ﬁ fﬁ Wl_s[ (1— 5éePes)d, )

(12) S(z,b,ﬁ):f dv[zﬂuov W~ EA cosy

+(N+1)In &,

1
Since the partition function of the grand canonical en- (17
semble[21,22 Z=3y£"Zy, we thus obtain the known re- where A= (27m/B#2)%2 The saddle-point equations that

sult satisfy the extremum condition for the acti@mare given by
z=[] (1- scePes)°. (12 o Y+ EA sin =0
$ BUeV ’

B. Ideal Boltzmann gas f dV €A cosyy=N+1. (19

For the Boltzmann statistics in the continuum case, Eg.
(6) reduces to From the behavior of the interaction potentigl= U, for
1 1 r<rg, andU=0 for r>ry wherer, is the particle radius
Zy=— § dé¢ exp[— f dvf d3p[ ge P we can conclude that=0 everywhere except for the vol-
2mi @ umeVy=2v(N+1) (vg is the particle volumg and ¢= ¢

in the volumeV, in which particle interaction occurs. The
—(N+1)In g]]. (13)  quantity ¢ can be found from the equation

Since e=p?/2m, where m is the particle mass, then Y+ EABUOV sin =0 (19

2
Jd3pe P2MB—= (27rm/B)*2 and hence with the normalization condition

Z_l éd V27Tm
NTo Eexp €

3/2 ~
W) _(N+1)in gl EA(V— Vo) + EAV,coS =N+ 1. (20)

If the interaction energy is finite, then the solution of Eg.
3€ dee SO, (14) (19 may be written in the formj=m+«a, a<w, and we
find thata= 7/ EABUV. As BUy— >, we havey= . This
~ corresponds to the pure hard sphere model. Having applied
We find the saddle-point valug from the equation the successive approximations to calculate the chemical po-
8S/6¢6=0 and thus obtainé=(27m/Br%) " 3(N+1)/V. tential, we rewrite Eq(20) in the form
Now we substitute this value in Eq14) and apply the
Stirling’s formulaN—N In N=In N!. This yields the parti- EA(V—Vo)—EAVp=N+1
tion function of the Boltzmann gas to be

T 27

then &=(N+1)/[AV(1—2V,/V)], and thus =m(N

o VN [27mkT|¥ANTD +1)BUo/[(N+1)BUy— (1—2Vy/V)].
ZN:(N+1)! ( 72 T) (15 The solutions obtained allow one to estimate the action.
We have
These well known results for the ideal systems show the 2\ (N+1)BU 2
consistency of the proposed approach with the traditional S= 20 0 }
methods. Later on we demonstrate new advantages of this BUg V [(N+1)BUs—(1-2V,/V)
statistical description. 1

—(N+1)+(N+1)In (21)

C. Hard sphere model AV(1=2Vo/V)
We generalize the hard sphere model by assuming that tr&nd thus the partition function is given by
potential barrietJ is finite. This value is determined by the 32N+ 1) Ni1
mechanism of particle collisions. The interaction energy can _, _ 2mmk 2V
be written adJ g = U8 . In this case, the inverse operator “N~ (N+1)! h? \%

is described by the expressimlgs}=uglass,. In the con-

VN+1

. : . . 2 + 2
tinuum case, we can approximately invert the potential. Xexp — 7 E (N+1)BUq } ]
When doing this, we have to remove the self-interaction BUo V [(N+1)BUg—(1-2V,/V)
terms that arise as we pass from the discrete sum (22)

255’ UsgNgNg to continuum. Thus, Eqg6) and(7) reduce
to The last expression may be rewritten in a compact form
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AVALRE m Vv V(k2+k2+Kk2+3\3?)
zszg(l—T‘)) [1_WVO 5= % 1y677rz b?— £AVJ(b)+ (N+1)In ¢,
0 e
(27

(N+1)8U, 2

(N+1)BUy—(1—2V,/V)| |’ wherer.=47q28, Jo(b) is the zero-order Bessel function
of the argumenb. If we assume that one charged particle is

present at every lattice site and that the lattice is isotropic, we

obtaink,=k,=k,=2mn3 wheren=(N+1)/V is the par-

ticle density. Then, minimizing Eq27) with respect tt and

b, we find that

X (23

whereZy is the partition function of the ideal Boltzmann gas
(15). ForUy—ce, we find the partition function of the pure
hard sphere model to be of the form

N+1

dvo(N+1) 3 2] %2
ZN:ZRJ(l‘— (24 =T [ 2] 2 (Ne - (N1
v 4 2mn*3 re( )= )
This result can be immediately obtained from the solution
of Eq. (18) under the assumptiod ;—. It should be em- +(N+1)In AR (28
phasized that solutio24) exactly reproduces the partition AV Jo(b)
function of the hard sphere model. In this approach, it is ~ .
derived without calculating virial coefficients. whereb is governed by the equation
| o m SN EIRAG)
D. Model with Coulomb repulsion. Wigner crystal — |1+ —= —+—==0
. _ _ 2mn? | Ty Jo(b)
Let us consider another model with repulsion. Suppose
the interaction is the screened Coulomb potential with §=(N+l)/AVJ8(B). HereT',=r.n'? is the coupling
hG o parameter equal to the Coulomb to kinetic energy ratio.
USS':|F P g Mrs—rol, Within the context of the general expressigsand(7), we
s” s’

obtain the partition function of the form

where A "1 is the screening radius. This model describes ~0 T
likely charged particles whose Coulomb repulsion is =2\ 1
screened by the uniformly charged background of opposite

sign. In this case, the inverse operator is given by Q. \yhereZ9 is the partition function of the ideal Boltzmann gas

Thus the actiors reduces to with renormalized volum§/=VJg(B).
1 It seems to be worthwhile to consider a one-dimensional
S:f dv §7a75 [(V )2+ N2y2] — £A cOS i analog of the system considered above since in this case the
+(N+1)In &, (25

1+

\ 2 '62 N+1
FHF} @

problem can be solved exactly. Physically this corresponds

to one-dimensional molecular systems with free charges.
Let us consider a cylindrical body of lengthand radius

r<L. Let the Coulomb-repulsing charges lie on the cylinder

whereA= (27rm/ 8#2)%? has the same meaning as before. ltaxis. In this case we have

should be emphasized that this field representation is com-

pletely similar to the lattice sine-Gordon model described in V (L 1 (dy)\?
[22]. In this book, the sine-Gordon model is proved to reduce S~ o 0% or.ldz) ~ §A cosy +(N+1)In €.
to a system of particles with Coulomb repulsion. The parti- (30)

tion function is transformed to an expression in terms of

occupation numbers. Actually, the authors have solved the Then the Euler-Lagrange equation reduces to the sine-
inverse problem. However, the representation of the partitioiGordon one, i.e.,

function in terms of occupation numbers does not allow one

to find the states associated with inhomogeneous particle dis- 1 d%y o
tributions since it does not provide any criterion for the se- rodZ ¢A sin ¢=0. (31)
lection of such states.
Now we employ the proposed approach in order to showrhe first integral
how to find the states corresponding, say, to the Wigner crys- ,
tal. Suppose that a state of interest occurs and can be de- dy
scribed as given by or, (E +EA cosy=C (32)
=Db(cosk,x+cosk,y+cosk,z). (26)  corresponds to the solution with the period
For a cubic sample with linear dimensionssubstituting the I ! dy 4K (33

trial function (26) in the action(25) yields J2r. ) JC—éAcosy \arg(C+eA)’
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whereK(p) is the full elliptic integral of the first kind with We introduce a dimensionless quantity R/r,, and de-
the argumenp=\2£A/(C+ £A). Substituting the solution note y?= gArfn. Then the action(in spherical coordinates
(32) in the action(30) yields can be written in terms of a new variahke=exp(¢/2), i.e.,
s=2§AVF@‘i+1 —&EAVH(N+1)In & an (29 e 2d |
p2K(p) p2 : S—47-rfr0 —ar] ~Yor r+&AVy+ (N+1)In &
(34 (39)

HereE(p) is the full elliptic integral of the second kind with
the same argumeni. The action(34) is extremum forp
=1; this corresponds to the soliton solution given by

If the cluster surface contribution in the actidB9) is
negligible, then the term ()do/dr can be omitted27,28.
Then the saddle-point equation reduces to

=4 arctan exfz\réA) (395 o 1 (dU 2+ g "
with the action arZ oldr) YT (40
A 1/2 \Vj . . . . . .
st(fr_ a EAV+ (N+1)In £, (36) The first integral of this equation is given by
) 1do)? 2 2_ A2
Thus we come to an expression for the partition function, odr +tyTot=4% (41)
ie.,
N+1 whereA? is an unknown integration constant. It should be
7.=7011— 8 37) noted that the first integral of EE40) is similar to that of the
NTEN JnreL? nonlinear Schrdinger equation. The solution of E@40)
with the first integral(41) is given by
The multisoliton solution can be obtained in a manner
similar to the analysis in Ref30]. A 1 42
The above model systems are homogeneous on the mac- o= 'y coshAr (42)

roscopic scale. Particle distributions, however, can be spa-

tially periodic. Moreover, this approach allows one to de-  Thys, introducing the ansatz=In ¢2 enabled us to find
scribe spatially inhomogeneous particle distributions, i.e.the solution of the nonlinear equation

finite-size macroscopic clusters. Now let us consider model

systems with interaction of the type that admits existence of 1 d2¢
such thermodynamically stable formations. > qZ + y?e¢=0,

IV. CLUSTER FORMATION IN CONDENSED MEDIA which satisfies the extremum condition of the functioBal

A. Gravitating gas model =[r2dr{}(V¢)?>—y%e¥}. When considering the one-

Let us consider a system of particles whose interactiofimensional solution, we assumed that the variation range of
consists of gravitational attraction and hard sphere repulsior OF @ is smaller than the dimension of the soliton formation

For the Newtonian attraction, the inverse operator is knowrfl€Scribed by the solutiof#2). In our interpretation, any soli-
to be ton solution corresponds to a spatially inhomogeneous par-

ticle distribution—a finite-size cluster. It depends on the in-
1 teraction parameters, chemical potential, and temperature,
W, r=— 2GR Avrdr, which solution is realized. In the model under consideration,
the soliton solution is associated with the case when, by vir-

whereG is the gravitational constant) is the particle mass, tue of gravitational attraction, particles are concentrated in a
and A, is the d’Alembert operator. Using the results of the Volume limited by their sizes. This corresponds to the solu-

hard sphere model yields an expression for the action, i.e.,ion (42) with the asymptoticsr®=1, =0 for r=d, where
d is the cluster sizeg—0, ¢— — asr—o. Physically,

1 this solution describes the presence of particles in the inho-
S—f dV[F (Ve)?—EAe?| + EAVp+(N+1)In &, mogeneous formation of the sizeand the absence of par-
Vo m (39) ticles at infinity, since in this case the spatial distribution
function isf(r) = ¢Ae®. Within the context of Eq(42), the

wherer ,=27Gm?B, and the integration is carried out over action(39) can be rewritten in the form

the whole space except for the volume occupied by particles. § v

An expression, analogous to E@8), was obtained in Ref. S=4 f A2—2+252)r2dr + v2 —2 + (N+1)In A
[6]. However, the authors did not fix the number of particles m ro( Yo LSS ( ) Ar3’
and disregarded particle repulsion. The resulf@ifcan be (43
supplemented with the solutions that allow for inhomoge-

neous particle distributions. Now we perform integration,

2
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radr 2 Z 2%k(pZk_q
[ ( ) B, (A d)2<F 1+ 2k,

d d
2 2.24r — 972 _ = 242 _A2,2 .
2y froa redr=2A fro cosRAr — A A“d“tanhAd—A“rgtanhArg 2k§:l ZkFD)(2K)1
* 22k(22k_l)

2k+1
+2.Z‘1 (2k+ 12k B Arol™ 0,

whereB,y are the Bernoulli numbers, and expand the result in power seriaslefl. Then the actiort43) reduces to

2 2

2V0 Y
S=— = (V=Vo)+ 72 3 +(N+1)in
m

- (44)
m Arp

Inasmuch ag?=1 for r =d, we havey?=A2?(1—A2d?). Substituting the last expression [#¥), we find the action to be
given by

2 Vo, V—Vo A2 242 YO 4
S=A —3——A —3—+(N+1)|n —3—+(N+1)In(1—A d )——3—A d-. (45)
Mm Mm Arg, M'm
|
In the next step, we find the extremum of E45) with B. Models with attraction and repulsion

respgciztoASby means of the iteration method. Thus we  Now we consider a system of particles whose interaction
obtain A*=r;(N+1)/(V—2V,). We substitute the last ex- consists of attraction and repulsion. This problem cannot be

pression in Eq(45) to obtain the action in the form solved in the general case. Let us reveal the main features of
spatially inhomogeneous patrticle distribution formation in
S=—(N+1)+(N+1) the cases when the inverse interaction operator is known. We
consider the screened Coulomb repulsion and attraction. Us-
| N+1 46 ing the known form of the inverse operatadg) yields

" AV[1—2Vo/V+A%d%(1-2V,y/V)] 1 1
S=fd%§rnvwﬁw%ﬂ+§rnvwﬁmwﬂ
Now we have to findl. In what follows we shall see that m ©
its value can be found by minimizing the action. Here, how-
ever, we estimate it in terms of physical reasoning. Let us — £Aefcosy
consider the condition for particle confinement within a clus-

ter. Forr=2ry, ¢= @, and henced=2r,+ @o/2A. If par-  where A=(27m/B#2)%? as before;y ! and "1 are the

ticles are not confined within the cluster=2r, and thus attraction and repulsion screening radii, respectively;

=47Q?B andr,=4mq?B; Q? andq? are interaction con-

+(N+1)In ¢, (49

~ 2Vo\ (N+1)r34dry, V, 6Gm stants. _ ' .
A%d?| 1- ~ = v v 1, P The saddle-point equations are given by

1
Therefore, within the context of Eq46), the partition [ (Ap—x?¢)+ éAefcos =0,

function of the system is given by

1 .
2V Vo 6Gm?|N*1 — (Ay=\%)) = éAe?sin y=0, (50
J i e
NV kT

Zy=23 (47)

P =
It should be noted that the gravitating gas partition func- j dVéAercosy=N+1.

tion thus obtained exactly reproduces the known expression _ ) _ ) ) _
[21,27] that was derived with calculating the virial coeffi- ~ This Set of nonlinear equations determines spatially inho-
cients. The proposed approach is more general becauseogeneous field distributions that correspond to the forma-

allows one to estimate the partition function in the presencdion of finite-size clusters. In some cases, these equations can
of clusters of arbitrary siz&=dr,,, i.e. be solved analytically and thus the parameters of such for-

mations can be found.
2 N+1 Let us consider the case when the effective change of the
2V, R’ (N+1) ; -
=201 —+ — , (48)  parameters of the system occurs for the distances<r
v v and y=0. Physically, this corresponds to the long-range at-
traction and short-range repulsion. Suppose th&tl. We
where Z, is the partition function of the ideal Boltzmann expand the second equation of the &) in power series of
gas. the “slow” field componenty to obtain the relation



wZ )\2
EAe® ——=3—+3&Ae’.
2 le

Having substituted the latter in E¢49), we can write the
effective action in the form
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1-~ ~ 72
SL=8m! = R¥(A%+ a?)+292R%S, | +k In —,
eff 3 Ard
(56)

whereR is the dimensionless cluster size and

Vi 2 3 3\? 3
Seff=2f dv Z(V(p) +§Arme"’+—r—rm +(N+1)In &,
e

s fR ~24 J’l odo
’ (51) o Lo BT
_ In the last expression, the cluster center is assumed to lie
where the dimensionless |engl‘h= R/rm is introduced gnd at the Spherica| coordinate system Origin_ Actuaw, de-
the integration extends over the dimensionless volifne scribes the cluster surface energy. The above formulas are
The physical situation described by the effective actiéh  valid when the transition layer thickness is considerably
corresponds to the long-range gravitational attraction and ekmaller than the cluster siZ29].
fective repulsion for distances smaller than the interaction For physical reasons, the asymptotic behavior of the so-
radius\ ~ 1. lution is the following:o?=1 for r=R, thenA~R™ ! and

Let us introduce the notationy?=¢ArS and a®  ye~A; for r=2r,, we haveo,=(4y2r2)~1. Thus we ob-
=3\%r3/2r,. Then we have the action for the functien tain S;=—(2ry7?) ~* and the effective action, in terms of
=exp(e/2) in the form cluster size, is given by

2 2 ~R3 1 EQZ
S =2f dV | = 22) 4 4202+ a2} +(N+1)In . L 8l — | a2t s | — —t —k In(AFRRY).  (57)
eff o dr Ars eff 3 R2] 1, m

Minimizing the action oveR yields the value oR. It is
This functional crucially differs from Eq39): the sign of  evident that the solution with finite size of spatially inhomo-
the second term is opposite and, moreover, it contains ageneous particle distribution can be realized only for
additional term given rise to by the interaction renormaliza-o?Rr,>3. The phase transition occurs fae= 2r, this cor-

tion in the presence of effective repulsion. The extremunyesponds to the conditionoér(%:& Thus we obtain the
condition of the actior{52) is realized for the solution of the yajue of the transition temperature to be given By

equation = 7b?Q?/ry, whereb=(Q/q)Ary>1.
) ’ If in this caseaR>1, then the effective action reduces to
dc 1 (dO’) 23_0 53
G2 g Y= 87 .~ -
r® oidr =5 Rk In(ArSR?). (59)
with the first integral _
) Having minimized the action with respect &y we find the
(E Vo| —y202=A2. (54) cluster size to b&j=k/4ma*, and the action to be given by
The solution of the latter equation is given b Se _2 ky1- ~6 In X (Arp)¥ . (59
q 9 y e 3 a2R0r0 4ra’ m
o= é; The minimum of this functional is realized for the opti-
y sinhA(r—r’) mum value of the number of particles within a cluster that is

. ) . determined by the equation
wherer’ is the soliton center coordinate.

As follows from the form of the distribution function 4ara? 241
f(r)=Aé&e?, this solution describes a spatially inhomoge- kc:(Ar—s)axz ex;{ - W)- (60)
neous particle distribution. We regard it as a finite-size clus- m ¢ 0
ter, with the cluster size to be found. If a multisoliton solu-  The critical size of a cluster i~§§=kc/47m2. Expanding

tion is realized, in which the soliton centers are dispersed by}, action(59) in power series in the vicinity of the critical

numbers of particles in the solitons are equal, &R  \ajye of the number of particles within a cluster, we obtain
=nSy, Where
2

1—

1k
2 |k

- ‘)/2 ngf:§ Ke
swf r2dr{A%+ a?+2y%5% +k Inﬁ. (55)

m

0 _
Seff_

The probability of finding a cluster ok particles isP
~exp(—Sy).

At last, the free energy of the gas of noninteracting clus-
ters isF=—61InZ In our case, with regard for the zero
modes[30], this reduces to

Here n is the number of clusters and=(N+1)/n is the
number of particles within a cluster. In a manner similar to
the analysis of new phase bubbles format|@7,28, we
write the effective action per cluster, i.e.,
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s 1 6 spatially inhomogeneous formations by means of statistical
F=n6{ Sgs— > In p St - (61 methods only. In order to obtain the final result we make use
of the integrals

C. Model with long-range repulsion d  redr “Y. and 4o d r2dr _ v
and short-range attraction 7)o cosi(yr) ‘¢ o cost(yr) 3%
Now let us consider the contrary case when the repulsion ~ 3 ) ] )
range is longer than the attraction range, so that0 and whereVy=4/37d>. Thus we obtain the final expression for

x+0. We assume that<1 and retain only the first term in the action, i.e,,
the action expansion in power series of the fieldThen we

. . . ~ 2 ~ ~
find from the first equation of the set50) that ¢ seﬁ:472<1__72a2)vd_y2(1+72a2)v
=(&Ar,,/x?)cosy and substitute this value in the action 3
(49). Thus we have )2
+(N+ —3.
(N+1)In Arg (66)

1
> (Vih)2— y?cos y— y>a’coS i

Sef-f:f d’{/
The iteration procedure fgy2 yields a simplified expres-
sion for the actionSy=—y?V+(N+1)In(?/Ard). This cor-
responds to the approximation that all the pores occupy a
volume that is small as compared to the system volume.

where we have introduced the dimensionless length Thus we obtairV=(N+1)/§/. Substituting this result in the

’}’2
+(N+1)In —5
(N+1)n =, (62)

e

=RIr,, and denotedy?=¢Ar and a®=r /2\?r3, action (66), we obtain the final expression for the partition
Since ya<1, we obtain an equation fag in the spheri- function of the system with regard for the spatially inhomo-
cally symmetric case, i.e., geneous particle distribution, i.e.,
= N+1
d’y  2dy 0 2 2 2 2 2| Vd
" sing=0. IN=Z\5 1+ va—4| 1— — ya® | = 6
gzt gr - ysinyg=0 (63) N=ZN 4 37 Y (67)

In the general case, the solution of this equation describes If we setya<1 andVy=V, (the particle volumg then
a soliton that may be regarded as a spatially inhomogeneouwse obtain the same result as for the hard sphere m@dg!
formation. Similarly to Eq.(40), we can neglect the term Evidently, the phase transition occurs fpi— 1, which cor-
(2/r)dy/dr when the dimension of this formation is larger responds to the temperature=2mpQ?\?. The last ex-

than the transition layer thickne$87,28. In this case the pression can be derived from the condition that the stability
first integral exists, i.e., of homogeneous distribution in the system of likely charged

particles is violated.
1/dy
2 \dr
o . o The results obtained in this paper illustrate the possibility
_ For C=v7, the solution of Eq.(63) 'S given by ¥ o describe a system of interacting particles with regard for
—arctan exp—H(r—r’)]. Its asymptotics isf=m asr—0,  air spatially inhomogeneous distribution by means of the
and =0 asr—c. Physically this solution describes the giatistical theory. Representation of the partition function in
formation of a pore in the continuum distribution of par- tarmg of the functional integral over the auxiliary fields cor-
ticles, i.e., atgfencg of particles within a limited volume of ogn0nds to the construction of an equilibrium sequence of
the sized~ ™" which encloses the soliton center. Inthe  ,ohaple states with regard for their weights. With the parti-
case of a multisoliton solution, which corresponds to the forsjon function being treated in this way, we can employ the
mation of a finite number of pores in the system, we Cafyethods of the quantum field theory. The extension to the

2
+y?cos y=C. (64) V. DISCUSSION

write complex plane provides a possibility to apply the saddle-
d 5 5 4 2 point method and thus to select the system states whose con-
_ 2 | |47 (1 y°a®)  4y'a tributions in the partition function are dominant. The solu-
Se=4mn | redr . . . o W
0 cost(yr) cost(yr) tions associated with the finite values of the “action

functional may be regarded as thermodynamically stable par-

2 2 2 2 2 2 ticle distributions. Whether the distribution is homogeneous
—yo(1+ —yo(1+ V-V . ; ;
Y(1H+yad) =y 1+ yial) 2 or inhomogeneous, depends on the solutions that satisfy the
5 extremum condition for the functional. Thus the spatially
+(N+1)In Y (65)  inhomogeneous distribution of the auxiliary fields can be un-

Arg' ambiguously related to the spatially inhomogeneous particle
distribution. It is also possible to find the parameters of such

Here we could use the results of the previous subsectioformations and the temperature of the phase transition ac-
and write the effective action in terms of the pore size. Ourcompanied by the formation of finite-size clusters of the new

purpose, however, is to show the possibility of describingphase. Actually, this approach extends the average field ap-
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proximation to involve into consideration spatially inhomo- tures. The soliton interaction energy is described by an ex-
geneous field distributions. pression of the formw,,.=A exd —k(r—r’)] [29,32. Obvi-

In the proposed approach, there is no need to introduceusly, this system of clusters may be regarded as a gas of
two auxiliary fields that correspond to attraction and repul-interacting particles and traditional methods of statistical
sion, respectively. We may introduce one complex field physics, e.g., the simplest Ising model, may be employed to
+i¢ associated with interaction of any type, and carry outestimate the temperature of the phase transition to the spa-
the procedure in the complex plane. We only have to knowtially ordered state.
the inverse operator of the interaction. Dividing the interac- Thus, the proposed approach provides a unified statistical
tion into several parts provides a better understanding of thdescription for systems of interacting particles with regard
mechanisms of spatially inhomogeneous particle distributiorior spatially inhomogeneous particle distributions. It also al-
formation. Actually, this method describes the first kind lows one to consider the collective behavior of such forma-
phase transitions to the states that contain implantations dions.
the new phasg31,32.

The proposed approach provides an advance in the study
of the behavior of the clusters formed. In the case of multi-
soliton solutions, the residual interactitmcompensated in The authors would like to thank Professor P. M. Tomchuk
the course of cluster formatipmproduces new spatial struc- and Dr. V. M. Pergamenshchik for helpful discussions.
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