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Statistical description of model systems of interacting particles and phase transitions
accompanied by cluster formation

B. I. Lev* and A. Ya. Zhugaevych
Department of Theoretical Physics, Institute of Physics, NAS Ukraine, Prospekt Nauky 46 Kiev-22, 252650 Kiev, Ukraine

~Received 8 September 1997!

We develop an approach to the statistical description of a system of interacting particles in order to describe
spatially inhomogeneous structures. A criterion is proposed for selecting system states whose contributions in
the partition function are dominant. A nonperturbative calculation of the partition function is demonstrated.
The known results for various systems~hard sphere model, gravitating gas, etc.! are reproduced. Spatially
inhomogeneous system states are considered. The conditions for the phase transition accompanied with cluster
formation are found for model systems. Cluster size distribution and cluster interaction residual energy are
estimated. The formation of new spatial structures in a cluster system is considered.@S1063-651X~98!07206-7#

PACS number~s!: 05.30.2d, 05.70.Fh
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I. INTRODUCTION

The formation of spatially inhomogeneous particle a
field distributions is a topical problem in condensed ma
physics. It concerns the study of physical grounds of
optimum states of the system and is of value for applicati
in practice@1–3#. Earlier investigations of the formation con
ditions and behavior of the inhomogeneous states h
mainly employed the statistical theory of nonequilibriu
processes. However, spatially inhomogeneous particle
field distributions can also be formed in equilibrium system
The conditions for the formation of such structures and th
physical manifestation are determined first of all by the ty
of interaction. So, we have to formulate an adequate m
ematical method that would describe formation and beha
of spatially inhomogeneous equilibrium particle and fie
distributions.

The purpose of this paper is to develop an approach@4# to
the statistical description of a system of interacting partic
with regard for spatially inhomogeneous particle distributio
In order to describe such structures, it is necessary to w
out a method that would enable us to select the states
thermodynamically stable particle distributions in the pa
tion function. The representation of the partition function
terms of a functional integral over auxiliary fields makes
possible to employ the methods of quantum field theory@5–
11#. An attempt to apply the functional integral in the d
scription of multiparticle systems was discussed for the fi
time in Ref. @12#. The advantages and difficulties of th
approach were described in@5#. The extension to the com
plex plane provides a possibility to apply the saddle-po
method making no use of the perturbation theory. It allo
one to select the system states associated with both hom
neous and inhomogeneous particle distributions.

A few model systems of interacting particles are know
for which the partition function can be evaluated exactly,
least in the thermodynamical limit. In this paper we demo

*Electronic address: lev@elphys.carrier.kiev.ua
571063-651X/98/57~6!/6460~10!/$15.00
r
e
s

ve

nd
.
ir
e
h-
r

s
.
rk
ith
-

t

t

t
s
ge-

,
t
-

strate the efficiency of the proposed approach by a non
turbative calculation of the partition function for the know
model systems with interaction~hard sphere model, Cou
lomb gas, gravitating gas, etc.!. This approach allows one to
describe any system of interacting particles with regard
spatially inhomogeneous particle distributions. A typic
physical situation that involves bound states in a parti
system occurs when the interaction consists of long-ra
attraction and short-range repulsion. Another realistic sit
tion is associated with the contrary case when the repuls
range is longer than the attraction range. Such physical
tems are, e.g., electrons on the liquid helium surface@13#,
polar atoms and molecules on a metal or dielectric surf
@14,15#, and ions implanted in silicon@1,16#. As long as such
interaction is present, the system cannot be homogene
and hence it involves spatially inhomogeneous parti
distributions—finite-size clusters.

The proposed approach allows one to describe such
ticle distributions, to calculate cluster size, to estimate
number of particles within a cluster, and to determine
temperature of the phase transition to the state under con
eration. The number of particles in a cluster and the size
the latter depend on the interaction type and intensity as w
as on external parameters. The residual interaction~uncom-
pensated after the cluster formation! produces interaction be
tween clusters that, in turn, can cause formation of new s
tial structures in the cluster system. The problem of how
find the cluster distribution and to estimate the influence
the external factors also can be solved in terms of this
proach.

Thus, a unified approach makes it possible to desc
equilibrium systems of interacting particles allowing for th
formation of thermodynamically stable spatially inhomog
neous particle distributions and to consider the collective
havior of the structures formed. The topicality of this pro
lem is confirmed by the recent attempts made by ot
authors@1,5,6#.

II. PARTITION FUNCTION FOR MODEL SYSTEMS
WITH INTERACTION. THE STATE SELECTION

CRITERION

A wide range of systems of interacting particles occur,
which the statistics must be involved in consideration wh
6460 © 1998 The American Physical Society
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57 6461STATISTICAL DESCRIPTION OF MODEL SYSTEMS OF . . .
dynamical quantum correlations can be disregarded. T
means that the interaction can be treated classically.
Hamiltonian of such a system can be written as@17–22#

H~n!5(
s

«sns2
1

2 (
s,s8

Wss8nsns81
1

2 (
s,s8

Uss8nsns8 ,

~1!

where «s is the additive part of the particle energy in th
states ~in most cases it is the kinetic energy!, Wss8 andUss8
are the absolute values of the attraction and repulsion e
is
he

er-

gies of particles in the statess and s8, respectively. The
macroscopic state of the system is determined by the o
pation numbersns . The subscripts corresponds to the vari
ables that describe individual particle states. It also can e
merate the lattice sites@18,20#; the specifics of the lattice
does not influence the result. Though the approach is
equate for considering the discrete case as well, in this st
we are interested only in the continuum approximation a
assume that the medium is isotropic.

The partition function of the grand canonical ensemble
given by
a-
ies of

e

ystem,
ula, i.e.,
Z5(
$n%

exp~2bH !5(
$n%

expH 2bF(
s

«sns2
1

2 (
s,s8

Wss8nsns81
1

2 (
s,s8

Uss8nsns8G J , ~2!

where($n% implies summation over all possible distributions$ns%, b[1/kT, andT is the absolute temperature. The summ
tion in Eq. ~2! can be formally carried out by introducing auxiliary field variables and making use of the known propert
the Gauss integrals@6,8–11#, i.e.,

expH n2

2u (
s,s8

vss8nsns8J 5E
2`

`

Dw expH n(
s

nsws2
u

2 (
s,s8

vss8
21wsws8J , ~3!

with

Dw5
Psdws

Adet~2pbvss8!
.

Here vss8
21 is the inverse matrix that satisfies the equationvss9

21vs9s85dss8 and n2561 depending on the sign of th
interaction or the potential energy.

Within the context of Eq.~3!, the partition function can be written as

Z5E DwE Dc(
$ns%

expH (s
~ws1 ics2b«s!ns2

1

2b (
s,s8

~Wss8
21wsws81Uss8

21cscs8!J . ~4!

In the above analysis, we did not restrict the number of particles. Now let us fix the number of particles in the s
N(n)5(sns . This means that we consider the canonical ensemble. To do this, we use the well-known Cauchy form

1

2p i R j(sns2N21dj51.

Then, making use of the contour integral@21,22#, we write the partition function of the system ofN particles in terms of the
grand partition function. Thus we have

ZN5
1

2p i R djE DwE Dc expH 2
1

2b (
s,s8

~Wss8
21wsws81Uss8

21cscs8!2~N11!ln jJ)s
(
$ns%

@j exp~ws1 ics2b«s!#
ns .

~5!

After summing over the occupation numbersns , the partition function reduces to

ZN5
1

2p i R djE DwE Dce2S~w,c,j!, ~6!

where

S~w,c,j!5
1

2b (
s,s8

~Wss8
21wsws81Uss8

21cscs8!1d(
s

ln~12dje2b«s1ws coscs!1~N11!ln j. ~7!
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In the last expression, the signd561 depends on the statis
tics ~plus and minus for the Bose and Fermi systems, resp
tively!.

The partition function representation in terms of the fun
tional integral over auxiliary fields corresponds to the co
struction of an equilibrium sequence of probable states of
system with regard for their weights. This representation
ables us to employ the well known methods of quantum fi
theory and to avoid using the perturbation theory. The ext
sion to the complex plane makes it possible to apply
saddle-point method@7#.

It should be emphasized that such a description is us
@5,6# because it advances the study of thermodynamical c
acteristics of model systems and their dependence on
medium. If interaction of some type does not occur, the g
eral representation~6! and ~7! allows one to reproduce th
partition function for pure gravitational attraction given
Ref. @6#, and the partition function of the sine-Gordon mod
for pure Coulomb repulsion given in Ref.@5#. This approach
also makes it possible to consider the states with spat
inhomogeneous particle distributions. To do this, one ha
vary the functionalS(w,c,j) for the fieldsw andc and the
analog of the chemical potentialj, and then to apply the
saddle-point method in order to obtain the asymptotic va
for the partition functionZN as N→`. The solutions, in
which the actionS is finite as the volume of the system ten
to infinity, can be interpreted as thermodynamically sta
particle distributions. Whether the distribution is homog
neous or inhomogeneous depends on the solutions that
isfy the extremum condition for the functionalS, i.e.,
dS/dw5dS/dc5dS/dj50. The equations for the saddle
point states are given by

1

b (
s8

Wss8
21ws82

jse
wscoscs

12djse
wscoscs

50,

1

b (
s8

Uss8
21cs81

jse
wssin cs

12djse
wscoscs

50,

(
s

jse
wscoscs

12djse
wscoscs

5N11, ~8!

wherejs5jeb«s5eb(«s2m) andm is the chemical potential.
This set of equations provides a solution of the abo

many-particle problem in the sense that it selects the sys
states whose contributions in the partition function are do
nant. Inasmuch as the inverse of the interaction matrix is
defined uniquely in the general case, it is impossible to fi
the general solution of the set~8!. And even if the last prob-
lem can be solved, there still remain technical difficulti
associated with solving a set of nonlinear equations and
terpreting the solutions thereof. In the sections that foll
we consider the solutions for some model systems.

It should be noted that the normalization condition@the
third equation in the set~8!# enables us to regard the expre
sion

f s5
jse

wscoscs

12djse
wscoscs
c-

-
-
e
-

d
n-
e
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to
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as the particle distribution function determined by the aux
iary fields. It is obvious that, for given statistics, the dist
bution function depends on the interaction nature and int
sity. Moreover, the proposed representation can be use
extend the treatment of the Bose condensation to the coo
nate space. The cluster formation corresponds to particle
calization within a limited space. In our treatment, the effe
is reflected in the behavior of the auxiliary fields and chem
cal potential. Probably, the proposed approach will impro
the understanding of the fractional statistics of particles
@8,23,24#.

In what follows, we apply the approach to describe mo
systems with various interactions, for which the partiti
function can be estimated in the thermodynamical lim
With this purpose in view, we make use of the continuu
approximation, which makes it possible to obtain analy
expressions even for inhomogeneous particle distributio
In the continuum approximation, the subscripts runs through
a continuum of values in the system volumeV. When inte-
grating over momenta and coordinates, we bear in mind
the unit cell volume in the space of individual states is eq
to v5(2p\)3.

In the continuum case, the inverse matrixvss8
21 for the

interactionvss85v(urWs2rWs8u) is given by@8,10,13#

v rr 8
21

5d rr 8L̂ r 8 , ~9!

whereL̂ r 8 is the operator for which the interaction potenti
is the Green function. For the screened Coulomb or Newt
ian potential, the inverse operator may be written as@8–11#

L̂ r 852
1

4pq2 ~D r 82l2!, ~10!

whereq2 is the interaction constant andl21 is the screening
length. The number of realistic interactions, for which t
inverse operator can be found, is limited. The difficulties
obtaining the inverse operator can be avoided by introduc
a collective variable@25,26# that corresponds to the relation
ship between the introduced fields on the saddle-point tra
tory. It is easier to find the required parameters of inhom
geneous structures in this approach, however, it is difficul
trace the formation details for such particle distribution
Without loss of generality within the above approximation
in what follows we describe the model systems of interact
particles taking into account their spatially inhomogeneo
distributions. First of all we demonstrate the advantage of
approach for the well-known models, and then describe
systems with interaction and find the conditions for the cl
ter formation and cluster parameters.

III. MODEL SYSTEMS WITH INTERACTION

To demonstrate the advantages of the approach, we
derive the well-known results.

A. Ideal Bose and Fermi gases

For the ideal gases,w5c50 and the partition function
~6! may be written as
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ZN5
1

2p i R dj expH 2d(
s

ln~12dje2b«s!

2~N11!ln jJ 5
1

2p i R dj

jN11 )
s

~12dje2b«s!d.

~11!

Since the partition function of the grand canonical e
semble@21,22# Z5(NjNZN , we thus obtain the known re
sult

Z5)
s

~12dje2b«s!d. ~12!

B. Ideal Boltzmann gas

For the Boltzmann statistics in the continuum case,
~6! reduces to

ZN5
1

2p i R dj expH 1

v E dVE d3p@je2b«

2~N11!ln j#J . ~13!

Since «5p2/2m, where m is the particle mass, the
*d3pe2(p2/2m)b5(2pm/b)3/2 and hence

ZN5
1

2p i R dj expH jVS 2pm

b\2 D 3/2

2~N11!ln jJ
5

1

2p i R dje2S~j!. ~14!

We find the saddle-point valuej̃ from the equation
dS/dj50 and thus obtainj̃5(2pm/b\2)23/2(N11)/V.
Now we substitute this value in Eq.~14! and apply the
Stirling’s formula N2N ln N.ln N!. This yields the parti-
tion function of the Boltzmann gas to be

ZN
0 5

VN11

~N11!! S 2pmkT

\2 D 3/2~N11!

. ~15!

These well known results for the ideal systems show
consistency of the proposed approach with the traditio
methods. Later on we demonstrate new advantages of
statistical description.

C. Hard sphere model

We generalize the hard sphere model by assuming tha
potential barrierU0 is finite. This value is determined by th
mechanism of particle collisions. The interaction energy c
be written asUss85U0dss8 . In this case, the inverse operat
is described by the expressionUss8

21
5U0

21dss8 . In the con-
tinuum case, we can approximately invert the potent
When doing this, we have to remove the self-interact
terms that arise as we pass from the discrete s
(s,s8Uss8nsns8 to continuum. Thus, Eqs.~6! and ~7! reduce
to
-

.

e
al
is

he

n

l.
n
m

ZN5
1

2p i R djE Dce2S~c,j! ~16!

and

S~c,j!5E dVF 1

2bU0V
c22jA cosc G1~N11!ln j,

~17!

where A5(2pm/b\2)3/2. The saddle-point equations tha
satisfy the extremum condition for the actionS are given by

1

bU0V
c1jA sin c50,

E dV jA cosc5N11. ~18!

From the behavior of the interaction potential~U5U0 for
r ,r 0 , andU50 for r .r 0 wherer 0 is the particle radius!
we can conclude thatc50 everywhere except for the vol
umeV052v0(N11) ~v0 is the particle volume!, andc5c̃
in the volumeV0 in which particle interaction occurs. Th
quantity c̃ can be found from the equation

c̃1jAbU0V sin c̃50 ~19!

with the normalization condition

jA~V2V0!1jAV0cos c̃5N11. ~20!

If the interaction energy is finite, then the solution of E
~19! may be written in the formc̃.p1a, a!p, and we
find thata5p/jAbU0V. As bU0→`, we havec̃5p. This
corresponds to the pure hard sphere model. Having app
the successive approximations to calculate the chemical
tential, we rewrite Eq.~20! in the form

jA~V2V0!2jAV0.N11

then j.(N11)/@AV(122V0 /V)#, and thus c̃.p(N
11)bU0 /@(N11)bU02(122V0 /V)#.

The solutions obtained allow one to estimate the acti
We have

S5
p2

bU0

V0

V F ~N11!bU0

~N11!bU02~122V0 /V!G
2

2~N11!1~N11!ln
N11

AV~122V0 /V!
~21!

and thus the partition function is given by

ZN5
VN11

~N11!! S 2pmkT

\2 D 3/2~N11!S 12
2V0

V D N11

3expH 2
p2

bU0

V0

V F ~N11!bU0

~N11!bU02~122V0 /V!G
2J .

~22!

The last expression may be rewritten in a compact form
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ZN5ZN
0 S 12

2V0

V D N11H 12
p2

bU0

V0

V

3F ~N11!bU0

~N11!bU02~122V0 /V!G
2J , ~23!

whereZN
0 is the partition function of the ideal Boltzmann ga

~15!. For U0→`, we find the partition function of the pur
hard sphere model to be of the form

ZN5ZN
0 S 12

4v0~N11!

V D N11

. ~24!

This result can be immediately obtained from the solut
of Eq. ~18! under the assumptionU0→`. It should be em-
phasized that solution~24! exactly reproduces the partitio
function of the hard sphere model. In this approach, it
derived without calculating virial coefficients.

D. Model with Coulomb repulsion. Wigner crystal

Let us consider another model with repulsion. Supp
the interaction is the screened Coulomb potential

Uss85
q2

urWs2rWs8u
e2lurWs2rWs8u,

where l21 is the screening radius. This model describ
likely charged particles whose Coulomb repulsion
screened by the uniformly charged background of oppo
sign. In this case, the inverse operator is given by Eq.~10!.
Thus the actionS reduces to

S5E dVH 1

8pq2b
@~¹c!21l2c2#2jA coscJ

1~N11!ln j, ~25!

whereA5(2pm/b\2)3/2 has the same meaning as before
should be emphasized that this field representation is c
pletely similar to the lattice sine-Gordon model described
@22#. In this book, the sine-Gordon model is proved to redu
to a system of particles with Coulomb repulsion. The pa
tion function is transformed to an expression in terms
occupation numbers. Actually, the authors have solved
inverse problem. However, the representation of the parti
function in terms of occupation numbers does not allow o
to find the states associated with inhomogeneous particle
tributions since it does not provide any criterion for the s
lection of such states.

Now we employ the proposed approach in order to sh
how to find the states corresponding, say, to the Wigner c
tal. Suppose that a state of interest occurs and can be
scribed as given by

c5b~coskxx1coskyy1coskzz!. ~26!

For a cubic sample with linear dimensionsL, substituting the
trial function ~26! in the action~25! yields
n

s

e

s

te

t
-

n
e
-
f
e
n
e
is-
-

w
s-
e-

S5
V~kx

21ky
21kz

213l2!

16pr e
b22jAVJ0

3~b!1~N11!ln j,

~27!

where r e[4pq2b, J0(b) is the zero-order Bessel functio
of the argumentb. If we assume that one charged particle
present at every lattice site and that the lattice is isotropic,
obtainkx5ky5kz52pn1/3, wheren5(N11)/V is the par-
ticle density. Then, minimizing Eq.~27! with respect toj and
b, we find that

S5
3p

4
F11S l

2pn1/3D 2G b̃2

Ge

~N11!2~N11!

1~N11!ln
N11

AVJ0
3~ b̃!

, ~28!

whereb̃ is governed by the equation

p

2
F11S l

2pn1/3D 2G b̃

Ge

1
J1~ b̃!

J0~ b̃!
50

with j5(N11)/AVJ0
3(b̃). HereGe[r en

1/3 is the coupling
parameter equal to the Coulomb to kinetic energy ra
Within the context of the general expressions~6! and~7!, we
obtain the partition function of the form

ZN5Z̃N
0 H 12

3p

4 F11S l

2pn1/3D 2G b̃2

Ge
J N11

, ~29!

whereZ̃N
0 is the partition function of the ideal Boltzmann ga

with renormalized volumeṼ5VJ0
3(b̃).

It seems to be worthwhile to consider a one-dimensio
analog of the system considered above since in this case
problem can be solved exactly. Physically this correspo
to one-dimensional molecular systems with free charges

Let us consider a cylindrical body of lengthL and radius
r !L. Let the Coulomb-repulsing charges lie on the cylind
axis. In this case we have

S5
V

L E
0

L

dzH 1

2r e
S dc

dzD 2

2jA coscJ 1~N11!ln j.

~30!

Then the Euler-Lagrange equation reduces to the s
Gordon one, i.e.,

1

r e

d2c

dz2 2jA sin c50. ~31!

The first integral

1

2r e
S dc

dzD 2

1jA cosc5C ~32!

corresponds to the solution with the period

l 5
1

A2r e
E dc

AC2jA cosc
5

4K~p!

A2r e~C1jA!
, ~33!
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whereK(p) is the full elliptic integral of the first kind with
the argumentp5A2jA/(C1jA). Substituting the solution
~32! in the action~30! yields

S52jAVH 2

p2

E~p!

K~p!
2

1

p2 11J 2jAV1~N11!ln j.

~34!

HereE(p) is the full elliptic integral of the second kind with
the same argumentp. The action~34! is extremum forp
51; this corresponds to the soliton solution given by

c54 arctan exp~zAr ejA! ~35!

with the action

S58S jA

r e
D 1/2 V

L
2jAV1~N11!ln j. ~36!

Thus we come to an expression for the partition functi
i.e.,

ZN5ZN
0 F12

8

AnreL
2GN11

. ~37!

The multisoliton solution can be obtained in a mann
similar to the analysis in Ref.@30#.

The above model systems are homogeneous on the
roscopic scale. Particle distributions, however, can be s
tially periodic. Moreover, this approach allows one to d
scribe spatially inhomogeneous particle distributions, i
finite-size macroscopic clusters. Now let us consider mo
systems with interaction of the type that admits existence
such thermodynamically stable formations.

IV. CLUSTER FORMATION IN CONDENSED MEDIA

A. Gravitating gas model

Let us consider a system of particles whose interac
consists of gravitational attraction and hard sphere repuls
For the Newtonian attraction, the inverse operator is kno
to be

Wrr 8
21

52
1

4pGm2 D r 8d rr 8 ,

whereG is the gravitational constant,m is the particle mass
and D r is the d’Alembert operator. Using the results of t
hard sphere model yields an expression for the action, i.

S5E
V0

dVH 1

4r m
~¹w!22jAewJ 1jAV01~N11!ln j,

~38!

wherer m[2pGm2b, and the integration is carried out ove
the whole space except for the volume occupied by partic
An expression, analogous to Eq.~38!, was obtained in Ref
@6#. However, the authors did not fix the number of partic
and disregarded particle repulsion. The result of@6# can be
supplemented with the solutions that allow for inhomog
neous particle distributions.
,

r

ac-
a-
-
.,
el
f

n
n.
n

,

s.

s

-

We introduce a dimensionless quantityr 5R/r m and de-
note g2[jArm

3 . Then the action~in spherical coordinates!
can be written in terms of a new variables5exp(w/2), i.e.,

S54pE
r 0

` H S 1

s

ds

dr D 2

2g2s2J r 2dr1jAV01~N11!ln j.

~39!

If the cluster surface contribution in the action~39! is
negligible, then the term (2/r )ds/dr can be omitted@27,28#.
Then the saddle-point equation reduces to

d2s

dr2 2
1

s S ds

dr D 2

1g2s350. ~40!

The first integral of this equation is given by

S 1

s

ds

dr D 2

1g2s25D2, ~41!

whereD2 is an unknown integration constant. It should
noted that the first integral of Eq.~40! is similar to that of the
nonlinear Schro¨dinger equation. The solution of Eq.~40!
with the first integral~41! is given by

s5
D

g

1

coshDr
. ~42!

Thus, introducing the ansatzw5 ln s2 enabled us to find
the solution of the nonlinear equation

1

2

d2w

dr2 1g2ew50,

which satisfies the extremum condition of the functionalS

5*r 2dr$ 1
4 (¹w)22g2ew%. When considering the one

dimensional solution, we assumed that the variation rang
w or s is smaller than the dimension of the soliton formati
described by the solution~42!. In our interpretation, any soli-
ton solution corresponds to a spatially inhomogeneous
ticle distribution—a finite-size cluster. It depends on the
teraction parameters, chemical potential, and temperat
which solution is realized. In the model under considerati
the soliton solution is associated with the case when, by
tue of gravitational attraction, particles are concentrated
volume limited by their sizes. This corresponds to the so
tion ~42! with the asymptoticss251, w50 for r 5d, where
d is the cluster size,s→0, w→2` as r→`. Physically,
this solution describes the presence of particles in the in
mogeneous formation of the sized and the absence of par
ticles at infinity, since in this case the spatial distributi
function is f (r )5jAew. Within the context of Eq.~42!, the
action ~39! can be rewritten in the form

S54pE
r 0

d

~D222g2s2!r 2dr1g2
V0

r m
3 1~N11!ln

g2

Arm
3 .

~43!

Now we perform integration,
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2g2E
r 0

d

s2r 2dr52D2E
r 0

d r 2dr

cosh2Dr
5

2

D H D2d2tanhDd2D2r 0
2tanhDr 022(

k51

`
22k~22k21!

~2k11!~2k!!
B2k~D d!2k1112k,

12 (
k51

`
22k~22k21!

~2k11!2k!
B2k~Dr 0%

2k11 ,

whereB2k are the Bernoulli numbers, and expand the result in power series ofDd!1. Then the action~43! reduces to

S52
D2

r m
3 ~V2V0!1g2

V0

r m
3 1~N11!ln

g2

Arm
3 . ~44!

Inasmuch ass251 for r 5d, we haveg2.D2(12D2d2). Substituting the last expression in~44!, we find the action to be
given by

S5D2
V0

r m
3 2D2

V2V0

r m
3 1~N11!ln

D2

Arm
3 1~N11!ln~12D2d2!2

V0

r m
3 D4d2. ~45!
e
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at-
In the next step, we find the extremum of Eq.~45! with
respect toD by means of the iteration method. Thus w
obtain D̃25r m

3 (N11)/(V22V0). We substitute the last ex
pression in Eq.~45! to obtain the action in the form

S52~N11!1~N11!

3 ln
N11

AV@122V0 /V1D̃2d2~122V0 /V!#
. ~46!

Now we have to findd. In what follows we shall see tha
its value can be found by minimizing the action. Here, ho
ever, we estimate it in terms of physical reasoning. Let
consider the condition for particle confinement within a clu
ter. For r 52r 0 , w5w0 and henced52r 01w0/2D̃. If par-
ticles are not confined within the cluster,d.2r 0 and thus

D̃2d2S 12
2V0

V D5
~N11!r m

3 4r 0

V
5

V0

V

6Gm2

r 0
b.

Therefore, within the context of Eq.~46!, the partition
function of the system is given by

ZN5ZN
0 F12

2V0

V
1

V0

V

6Gm2

r 0kT GN11

. ~47!

It should be noted that the gravitating gas partition fun
tion thus obtained exactly reproduces the known expres
@21,22# that was derived with calculating the virial coeffi
cients. The proposed approach is more general becau
allows one to estimate the partition function in the prese
of clusters of arbitrary sizeR5drm , i.e.,

ZN5ZN
0 F12

2V0

V
1

R2r m~N11!

V GN11

, ~48!

where ZN
0 is the partition function of the ideal Boltzman

gas.
-
s
-

-
n

it
e

B. Models with attraction and repulsion

Now we consider a system of particles whose interact
consists of attraction and repulsion. This problem cannot
solved in the general case. Let us reveal the main feature
spatially inhomogeneous particle distribution formation
the cases when the inverse interaction operator is known.
consider the screened Coulomb repulsion and attraction.
ing the known form of the inverse operators~10! yields

S5E dVH 1

2r m
@~¹w!21x2w2#1

1

2r e
@~¹c!21l2c2#

2jAewcoscJ 1~N11!ln j, ~49!

where A[(2pm/b\2)3/2 as before;x21 and l21 are the
attraction and repulsion screening radii, respectively;r m
[4pQ2b and r e[4pq2b; Q2 and q2 are interaction con-
stants.

The saddle-point equations are given by

1

r m
~Dw2x2w!1jAewcosc50,

1

r e
~Dc2l2c!2jAewsin c50, ~50!

E dVjAewcosc5N11.

This set of nonlinear equations determines spatially in
mogeneous field distributions that correspond to the form
tion of finite-size clusters. In some cases, these equations
be solved analytically and thus the parameters of such
mations can be found.

Let us consider the case when the effective change of
parameters of the system occurs for the distancesl21,r
andx50. Physically, this corresponds to the long-range
traction and short-range repulsion. Suppose thatc!1. We
expand the second equation of the set~50! in power series of
the ‘‘slow’’ field componentc to obtain the relation
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jAew
c2

2
53

l2

r e
13jAew.

Having substituted the latter in Eq.~49!, we can write the
effective action in the form

Seff52E dṼH 1

4
~¹w!21jArm

3 ew1
3

2

l2

r e
r m

3 J 1~N11!ln j,

~51!

where the dimensionless lengthr̃ 5R/r m is introduced and
the integration extends over the dimensionless volumeṼ.
The physical situation described by the effective action~51!
corresponds to the long-range gravitational attraction and
fective repulsion for distances smaller than the interact
radiusl21.

Let us introduce the notationg2[jArm
3 and a2

[3l2r m
3 /2r e . Then we have the action for the functions

5exp(w/2) in the form

Seff52E dṼH S 1

s

ds

dr D 2

1g2s21a2J 1~N11!ln
g2

Arm
3 .

~52!

This functional crucially differs from Eq.~39!: the sign of
the second term is opposite and, moreover, it contains
additional term given rise to by the interaction renormaliz
tion in the presence of effective repulsion. The extrem
condition of the action~52! is realized for the solution of the
equation

d2s

dr2 2
1

s S ds

dr D 2

2g2s350 ~53!

with the first integral

S 1

s
¹s D 2

2g2s25D2. ~54!

The solution of the latter equation is given by

s̃5
D

g

1

sinh D~r 2r 8!
,

wherer 8 is the soliton center coordinate.
As follows from the form of the distribution function

f (r )5Ajew, this solution describes a spatially inhomog
neous particle distribution. We regard it as a finite-size cl
ter, with the cluster size to be found. If a multisoliton sol
tion is realized, in which the soliton centers are dispersed
numbers of particles in the solitons are equal, thenSeff

5nSeff
0 , where

Seff
0 5F8pE r 2dr$D21a212g2s̃2%1k ln

g2

Arm
3 G . ~55!

Here n is the number of clusters andk5(N11)/n is the
number of particles within a cluster. In a manner similar
the analysis of new phase bubbles formation@27,28#, we
write the effective action per cluster, i.e.,
f-
n

n
-

-
-

ut

Seff
0 58pH 1

3
R̃3~D21a2!12g2R̃2S1J 1k ln

g2

Arm
3 ,

~56!

whereR̃ is the dimensionless cluster size and

S15E
2r 0

R

s̃2dr5E
s0

1 sds

AD21g2s2
.

In the last expression, the cluster center is assumed to
at the spherical coordinate system origin. Actually,S1 de-
scribes the cluster surface energy. The above formulas
valid when the transition layer thickness is considera
smaller than the cluster size@29#.

For physical reasons, the asymptotic behavior of the
lution is the following:s251 for r 5R, thenD;R21 and
ge;D; for r 52r 0 , we haves0.(4g2r 0

2)21. Thus we ob-
tain S1.2(2r 0g2)21 and the effective action, in terms o
cluster size, is given by

Seff
0 .8pH R̃3

3 S a21
1

R̃2D 2
R̃2

r 0
J 2k ln~Arm

3 R̃2!. ~57!

Minimizing the action overR̃ yields the value ofR̃. It is
evident that the solution with finite size of spatially inhom
geneous particle distribution can be realized only
a2Rr0.3. The phase transition occurs forR52r 0 , this cor-
responds to the condition 2a2r 0

253. Thus we obtain the
value of the transition temperature to be given byuc
.pb2Q2/r 0 , whereb5(Q/q)lr 0@1.

If in this caseaR.1, then the effective action reduces

Seff
0 .

8p

3
a2R̃32k ln~Arm

3 R̃2!. ~58!

Having minimized the action with respect toR̃, we find the
cluster size to beR̃0

35k/4pa2, and the action to be given b

Seff
0 5

2

3
kH 12

6

a2R̃0r 0

2 ln
k

4pa2
~Arm

3 !3/2J . ~59!

The minimum of this functional is realized for the opt
mum value of the number of particles within a cluster that
determined by the equation

kc5
4pa2

~Arm
3 !3/2 expS 2

24p

a4/3kc
1/3r 0

D . ~60!

The critical size of a cluster isR̃c
35kc/4pa2. Expanding

the action~59! in power series in the vicinity of the critica
value of the number of particles within a cluster, we obta

Seff
0 5

2

3
kcF12

1

2 S k

kc
D 2G .

The probability of finding a cluster ofk particles is P
;exp(2Seff

0 ).
At last, the free energy of the gas of noninteracting clu

ters is F52u ln Z. In our case, with regard for the zer
modes@30#, this reduces to
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F5nuH Seff
0 2

1

2
ln

6

p
Seff

0 J . ~61!

C. Model with long-range repulsion
and short-range attraction

Now let us consider the contrary case when the repuls
range is longer than the attraction range, so thatl50 and
xÞ0. We assume thatw!1 and retain only the first term in
the action expansion in power series of the fieldw. Then we
find from the first equation of the set~50! that w̃
5(jArm /x2)cosc and substitute this value in the actio
~49!. Thus we have

Seff5E dṼH 1

2
~¹c!22g2cosc2g2a2cos2cJ

1~N11!ln
g2

Are
3 , ~62!

where we have introduced the dimensionless lengthr̃
5R/r e , and denotedg2[jAre

3 anda2[r m/2l2r e
3.

Sincega!1, we obtain an equation forc in the spheri-
cally symmetric case, i.e.,

d2c

dr2 1
2

r

dc

dr
2gsin c50. ~63!

In the general case, the solution of this equation descr
a soliton that may be regarded as a spatially inhomogene
formation. Similarly to Eq.~40!, we can neglect the term
(2/r )dc/dr when the dimension of this formation is larg
than the transition layer thickness@27,28#. In this case the
first integral exists, i.e.,

1

2 S dc

dr D 2

1g2cosc5C. ~64!

For C5g2, the solution of Eq.~63! is given by c
5arctan exp@2g(r2r8)#. Its asymptotics isc5p as r→0,
and c50 as r→`. Physically this solution describes th
formation of a pore in the continuum distribution of pa
ticles, i.e., absence of particles within a limited volume
the sized;g21 which encloses the soliton centerr 8. In the
case of a multisoliton solution, which corresponds to the f
mation of a finite number of pores in the system, we c
write

Seff54pnE
0

d

r 2drF H 4g2~11g2a2!

cosh2~yr !
2

4g4a2

cosh4~yr !J
2g2~11g2a2!G2g2~11g2a2!~V2Vd!

1~N11!ln
g2

Are
3 . ~65!

Here we could use the results of the previous subsec
and write the effective action in terms of the pore size. O
purpose, however, is to show the possibility of describ
n

es
us

f

-
n

n
r
g

spatially inhomogeneous formations by means of statist
methods only. In order to obtain the final result we make u
of the integrals

4pE
0

d r 2dr

cosh2~yr !
5Ṽd and 4pE

0

d r 2dr

cosh4~gr !
5

5

3
Ṽd ,

whereṼd54/3pd3. Thus we obtain the final expression fo
the action, i.e.,

Seff54g2S 12
2

3
g2a2D Ṽd2g2~11g2a2!Ṽ

1~N11!ln
g2

Are
3 . ~66!

The iteration procedure forg2 yields a simplified expres-
sion for the action:Seff

0 52g2Ṽ1(N11)ln(g2/Are
3). This cor-

responds to the approximation that all the pores occup
volume that is small as compared to the system volum
Thus we obtaing̃25(N11)/Ṽ. Substituting this result in the
action ~66!, we obtain the final expression for the partitio
function of the system with regard for the spatially inhom
geneous particle distribution, i.e.,

ZN5ZN
0 H 11g2a224S 12

2

3
g2a2D Ṽd

Ṽ
J N11

. ~67!

If we setga!1 andVd5V0 ~the particle volume!, then
we obtain the same result as for the hard sphere model~24!.
Evidently, the phase transition occurs forga→1, which cor-
responds to the temperatureuc.2prQ2/l2. The last ex-
pression can be derived from the condition that the stab
of homogeneous distribution in the system of likely charg
particles is violated.

V. DISCUSSION

The results obtained in this paper illustrate the possibi
to describe a system of interacting particles with regard
their spatially inhomogeneous distribution by means of
statistical theory. Representation of the partition function
terms of the functional integral over the auxiliary fields co
responds to the construction of an equilibrium sequence
probable states with regard for their weights. With the pa
tion function being treated in this way, we can employ t
methods of the quantum field theory. The extension to
complex plane provides a possibility to apply the sadd
point method and thus to select the system states whose
tributions in the partition function are dominant. The sol
tions associated with the finite values of the ‘‘action
functional may be regarded as thermodynamically stable
ticle distributions. Whether the distribution is homogeneo
or inhomogeneous, depends on the solutions that satisfy
extremum condition for the functional. Thus the spatia
inhomogeneous distribution of the auxiliary fields can be u
ambiguously related to the spatially inhomogeneous part
distribution. It is also possible to find the parameters of su
formations and the temperature of the phase transition
companied by the formation of finite-size clusters of the n
phase. Actually, this approach extends the average field
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proximation to involve into consideration spatially inhom
geneous field distributions.

In the proposed approach, there is no need to introd
two auxiliary fields that correspond to attraction and rep
sion, respectively. We may introduce one complex fieldw
1 ic associated with interaction of any type, and carry o
the procedure in the complex plane. We only have to kn
the inverse operator of the interaction. Dividing the intera
tion into several parts provides a better understanding of
mechanisms of spatially inhomogeneous particle distribu
formation. Actually, this method describes the first ki
phase transitions to the states that contain implantation
the new phase@31,32#.

The proposed approach provides an advance in the s
of the behavior of the clusters formed. In the case of mu
soliton solutions, the residual interaction~uncompensated in
the course of cluster formation! produces new spatial struc
.

z.

ys

s

ce
-

t
w
-
e
n

of

dy
i-

tures. The soliton interaction energy is described by an
pression of the formv rr 85A exp@2k(r2r8)# @29,32#. Obvi-
ously, this system of clusters may be regarded as a ga
interacting particles and traditional methods of statisti
physics, e.g., the simplest Ising model, may be employed
estimate the temperature of the phase transition to the
tially ordered state.

Thus, the proposed approach provides a unified statis
description for systems of interacting particles with rega
for spatially inhomogeneous particle distributions. It also
lows one to consider the collective behavior of such form
tions.
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